Introduction An introduction to Machine Learning & Data Visualization ### Machine Learning Using computer programs such as python to process data Advantage: Can process large datasets quickly #### Use #### Volume/Size - effect this has on resources - collections growing at certain levels - areas of dominance changing overall nature of collection - new technical tools shaping subject headings and classification (computer generated art) ### Python #### (object oriented programming) - abstraction (hiding unnecessary details from the user) - encapsulation (combining data and methods that work on that data within one unit) - inheritance (when an already existing class extends its features to a new class). - polymorphism (when objects of different types can be accessed through the same interface) Link: https://www.python.org/ ### Glossary python jupyter notebook script textual data ### Libraries A library in python is a collection of functions and methods that you can 'import' into your script directly. This saves you having to write the code. Numpy - scientific computing Pandas - data manipulation and analysis Scikit-learn - machine learning and data mining **NLTK** - Language processing ### Loading a corpus In python on your jupyter notebook... from nltk.corpus import gutenberg import matplotlib.pyplot as plt import matpoltlib bible = gutenberg.open('bible-kjv.txt') bible = bible.readlines () Bible[:5} ### Results ``` ['[The King James Bible]\n', '\n', 'The Old Testament of the King James Bible\n', '\n', '\n', 'The First Book of Moses: Called Genesis\n'] ``` ### Stopwords stopwords = nltk.corpus.stopwords.words('english') words = [word.lower() for word in words if word.lower() not in stopwords() c = Counter (words) c.most_common(10) #### Results ``` [('the', 64014), ('and', 51313), ('of', 34634), ('to', 13567), ('that', 12784), ('in', 12503), ('he', 10261), ('shall', 9838), ('unto', 8987), ('for', 8810)] ``` #### Algorithms for text - Bag of Words Model - Bag of n-grams Model - Document similarity - Topic Models #### Advanced Feature Engineering - Word2Vec Model - The GloVe Model - The FastText Model ### **Text Classification** import pandas as pd import numpy as np import re import nltk import matplotlib.pyplot as plt pd.options.display.max_colwidth = 200 %matplotlib inline ``` corpus = [['The sky is blue and beautiful.', 'Love this blue and beautiful sky!', 'The quick brown fox jumps over the lazy dog', 'I love eggs, ham, sausage and bacon', 'The brown fox is quick and the blue dog is lazy', 'The sky is very blue and the sky is beautiful today', 'The dog is lazy but the fox is quick' ``` ### Labelling labels = ['weather', 'weather', 'animals', 'food', 'animals', 'weather', 'animals'] ``` corpus = np.array(corpus) ``` corpus_df = pd>DataFrame({'Document': corpus, 'Category': labels}) ``` corpus_df = corpus_df[['Document', 'Category]] corpus_df ``` ### Results | OGE ORGA | Category | Document | |----------|---|----------| | weather | The sky is blue and beautiful. | 0 | | weather | Love this blue and beautiful sky! | 1 | | animals | The quick brown fox jumps over the lazy dog | 2 | | food | I love eggs, ham, sausage and bacon | 3 | | animals | The brown fox is quick and the blue dog is lazy | 4 | | weather | The sky is very blue and the sky is beautiful today | 5 | | animals | The dog is lazy but the fox is quick | 6 | ### **Data Visualization** # What kinds of Data Visualizations are there? Data visualizations can be maps, plots, diagrams and graphs. Instead of reading densely written reports, we can use visualizations to see patterns or trends in data. ### Selecting a visualization type What do you want to find? https://datavizcatalogue.com/ The data viz catalogue is a great interactive resource that can be used to discover which type of visualization suits which function best. #### A PERIODIC TABLE OF VISUALIZATION METHODS ### **Functions** A CONTROL OF ORGANIZATIONAL SOCIETY TO SOCIE Comparisons Proportions Relationships Part-to-a-whole Processes & methods Distribution How things work Range Patterns Locations Concepts Analysing Text Movement or flow Data over time # Creating visualizations select process mine visualize We select the data then process it. We identify what we want to do with it - group the content by theme or topic, analyse the content for features of language for example. Once we know what we are looking for, we can select a classifier to classify the data accordingly. We did this at the beginning when we grouped our sentences together into topics (food, animals, weather) ### Mining Mining methods place the data into a context that enables it to be visualized Methods include sequences analysis, classifications, path analysis and clustering #### Clustering algorithms - Flat clustering (creates a set of clusters without any explicit structure that would relate clusters to each other; It's also called exclusive clustering) - **Hierarchical clustering** (Creates a hierarchy of clusters) - **Hard clustering** (Assigns each document/object as a member of exactly one cluster) - **Soft clustering** (Distribute the document/object over all clusters) #### Algorithms Agglomerative (Hierarchical clustering) K-Means (Flat clustering, Hard clustering) EM Algorithm (Flat clustering, Soft clustering) https://www.codeproject.com/Articles/439890/Text-Documents-Clustering-using-K-Means-Algorithm #### Clustering (unsupervised) finding a *structure* in a collection of unlabeled data. The aim is to organize the data into groups based on common features or similarities. ### Scatterplot import seaborn as sns sns.set() ``` # Load the example planets dataset planets = sns.load dataset("planets") cmap = sns.cubehelix palette(rot=-.2, as cmap=True) ax = sns.scatterplot(x="distance", y="orbital_period", hue="year", size="mass", palette=cmap, sizes=(10, 200), data=planets) ``` ### Scatterplot ### kdeplot import numpy as np import seaborn as sns import matplotlib.pyplot as plt ``` sns.set(style="dark") rs = np.random.RandomState(50) # Set up the matplotlib figure f, axes = plt.subplots(3, 3, figsize=(9, 9), sharex=True, sharey=True) # Rotate the starting point around the cubehelix hue circle for ax, s in zip(axes.flat, np.linspace(0, 3, 10)): ``` ### kdeplot f.tight layout() ``` # Create a cubehelix colormap to use with kdeplot cmap = sns.cubehelix_palette(start=s, light=1, as_cmap=True) # Generate and plot a random bivariate dataset x, y = rs.randn(2, 50) sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=ax) ax.set(xlim=(-3, 3), ylim=(-3, 3)) ``` ## kdeplot #### Dataset BLL Theses https://bl.iro.bl.uk/work/86c21604-10d3-4367-a131-fb19a259ce07 | 1 | Α | В | С | D | E | F | G | | |-------|-------------|---|------------------------|--------------------------|-----------------------------------|---------|--------------|--| | 1 | Title | | Author | Institution | 1 | | | | | 2 | Computat | tion and measurement of turbulent flow through idealized turbin | Loizou, Panos A. | University of Manchester | | | | | | 3 | Prolactin a | and growth hormone secretion in normal, hyperprolactinaemic a | Prescott, R. W. G. | University | University of Newcastle upon Tyne | | | | | 4 | Influence | of strain fields on flame propagation | Mendes-Lopes, J. M. C. | University | University of Cambridge | | | | | 5 | Connectiv | rity, flow and transport in network models of fractured media | Robinson, Peter Clive | University of Oxford | | | | | | 6 | The theor | ry and implementation of a high quality pulse width modulated v | Lower, K. N. | University | of Bristol | | | | | 7 | Separatio | n bubbles at high Reynolds number : measurement and comput | Davenport, W. J. | University | University of Cambridge | | | | | 8 | A unified | approach to the identification of dynamic behaviour using the th | Brown, T. A. | University | | | | | | 9 | PWM stra | itegies for microprocessor control of variable speed drives | Midoun, A. | University | of Bristol | | | | | 10 | Theoretica | al investigations of stress concentrations in carbon fibre reinforc | Wu, C. M. L. | University | of Bristol | | | | | 11 | Speed-cha | anging of induction motors by phase modulation | Ismail, K. S. | University | of Bristol | | | | | 12 | The immu | ne response of the bovine udder to Streptococcus agalactiae inf | MacKie, D. P. | Queen's l | Jniversity I | Belfast | | | | 13 | Metabolio | effects of Bordetella pertussis | Sidey, Fiona M. | University | of Stratho | clyde | | | | 14 | Executing | behavioural definitions in Higher Order Logic | Camilleri, Albert John | University | of Cambr | idge | | | | 15 | A method | lology for automated design of computer instruction sets | Bennett, J. P. | University | of Cambr | idge | | | | 16 | Reasoning | g about the function and timing of integrated circuits with Prolog | Leeser, Miriam Ellen | University | of Cambr | idge | | | | 17 | ModifiedB | r modelling of flave with a free curface | lum liu | Imporial (| Callaga Lar | dan | | | | Ready | | | | | | 148% (| - | | ## https://textexture.com #### https://pythonhosted.org/tethne/tutorial.mallet.html ### https://towardsdatascience.com/getting-started-with-graph-analysis-in-pythc etworkx-5e2d2f82f18e ### Regression The term regression is used when you try to find the relationship between variables. In Machine Learning, and in statistical modeling, that relationship is used to predict the outcome of future events. #### Linear Regression https://www.w3schools.com/python/python_ml_polynomial_regression.asp Linear regression uses the relationship between the data-points to draw a straight line through all them. This line can be used to predict future values. ### **Linear Regression** ### Polynomial Regression If your data points clearly will not fit a linear regression (a straight line through all data points), it might be ideal for polynomial regression. Polynomial regression, like linear regression, uses the relationship between the variables x and y to find the best way to draw a line through the data points. 90 - 80 - 70 - 60 - 5 10 15 20 https://www.w3schools.com/python_ml_polynomial_regression.asp #### Links & Tools #### **Machine Learning** www.python.org #### Visualization https://seaborn.pydata.org/ https://github.com/brianspiering/awesome-dl4nlp https://datavizcatalogue.com/ www.tableau.com https://densitydesign.org/ https://www.flickr.com/photos/densitydesign/sets/72157628222445801/with/6431913399/ https://www.flickr.com/photos/densitydesign/sets/72157624141332939/ https://densitydesign.org/research/minerva/ Stack Overflow https://stackoverflow.com/questions/tagged/python Tableau https://www.tableau.com/learn/articles/data-visualization ttps://www.elsevier.com/connect/story/research-matters/research-data/a-5-step-guide-to-data-visualization # Links www.iskouk.org https://twitter.com/ISKOUK https://www.linkedin.com/groups/2079995/