Introduction

An introduction to Machine Learning & Data Visualization

Machine Learning

Using computer programs such as python to process data

Advantage:

Can process large datasets quickly

Use

Volume/Size

- effect this has on resources
- collections growing at certain levels
- areas of dominance changing overall nature of collection
- new technical tools shaping subject headings and classification (computer generated art)

Python

(object oriented programming)

- abstraction (hiding unnecessary details from the user)
- encapsulation (combining data and methods that work on that data within one unit)
- inheritance (when an already existing class extends its features to a new class).
- polymorphism (when objects of different types can be accessed through the same interface)

Link: https://www.python.org/

Glossary

python
jupyter
notebook
script
textual data

Libraries

A library in python is a collection of functions and methods that you can 'import' into your script directly. This saves you having to write the code.

Numpy - scientific computing

Pandas - data manipulation and analysis

Scikit-learn - machine learning and data mining

NLTK - Language processing

Loading a corpus

In python on your jupyter notebook...

from nltk.corpus import gutenberg import matplotlib.pyplot as plt import matpoltlib

bible = gutenberg.open('bible-kjv.txt')
bible = bible.readlines ()
Bible[:5}

Results


```
['[The King James Bible]\n',
'\n',
'The Old Testament of the King James Bible\n',
'\n',
'\n',
'The First Book of Moses: Called Genesis\n']
```

Stopwords

stopwords = nltk.corpus.stopwords.words('english')

words = [word.lower() for word in words if word.lower() not in stopwords()

c = Counter (words)

c.most_common(10)

Results

```
[('the', 64014),
('and', 51313),
('of', 34634),
('to', 13567),
('that', 12784),
('in', 12503),
('he', 10261),
('shall', 9838),
('unto', 8987),
('for', 8810)]
```


Algorithms for text

- Bag of Words Model
- Bag of n-grams Model
- Document similarity
- Topic Models

Advanced Feature Engineering

- Word2Vec Model
- The GloVe Model
- The FastText Model

Text Classification

import pandas as pd

import numpy as np

import re

import nltk

import matplotlib.pyplot as plt

pd.options.display.max_colwidth = 200

%matplotlib inline


```
corpus = [['The sky is blue and beautiful.',
     'Love this blue and beautiful sky!',
     'The quick brown fox jumps over the lazy dog',
     'I love eggs, ham, sausage and bacon',
     'The brown fox is quick and the blue dog is lazy',
     'The sky is very blue and the sky is beautiful today',
     'The dog is lazy but the fox is quick'
```

Labelling

labels = ['weather', 'weather', 'animals', 'food',
'animals', 'weather', 'animals']


```
corpus = np.array(corpus)
```

corpus_df = pd>DataFrame({'Document': corpus, 'Category': labels})

```
corpus_df = corpus_df[['Document', 'Category]]
corpus_df
```

Results

OGE ORGA	Category	Document
weather	The sky is blue and beautiful.	0
weather	Love this blue and beautiful sky!	1
animals	The quick brown fox jumps over the lazy dog	2
food	I love eggs, ham, sausage and bacon	3
animals	The brown fox is quick and the blue dog is lazy	4
weather	The sky is very blue and the sky is beautiful today	5
animals	The dog is lazy but the fox is quick	6

Data Visualization

What kinds of Data Visualizations are there?

Data visualizations can be maps, plots, diagrams and graphs. Instead of reading densely written reports, we can use visualizations to see patterns or trends in data.

Selecting a visualization type

What do you want to find?

https://datavizcatalogue.com/

The data viz catalogue is a great interactive resource that can be used to discover which type of visualization suits which function best.

A PERIODIC TABLE OF VISUALIZATION METHODS

Functions

A CONTROL OF ORGANIZATIONAL SOCIETY TO SOCIE

Comparisons Proportions Relationships

Part-to-a-whole Processes & methods

Distribution How things work Range

Patterns Locations Concepts Analysing Text

Movement or flow Data over time

Creating visualizations

select

process

mine

visualize

We select the data then process it.

We identify what we want to do with it - group the content by theme or topic, analyse the content for features of language for example. Once we know what we are looking for, we can select a classifier to classify the data accordingly.

We did this at the beginning when we grouped our sentences together into topics (food, animals, weather)

Mining

Mining methods place the data into a context that enables it to be visualized

Methods include sequences analysis, classifications, path analysis and clustering

Clustering algorithms

- Flat clustering (creates a set of clusters without any explicit structure that would relate clusters to each other; It's also called exclusive clustering)
- **Hierarchical clustering** (Creates a hierarchy of clusters)
- **Hard clustering** (Assigns each document/object as a member of exactly one cluster)
- **Soft clustering** (Distribute the document/object over all clusters)

Algorithms

Agglomerative (Hierarchical clustering)

K-Means (Flat clustering, Hard clustering)

EM Algorithm (Flat clustering, Soft clustering)

https://www.codeproject.com/Articles/439890/Text-Documents-Clustering-using-K-Means-Algorithm

Clustering (unsupervised)

finding a *structure* in a collection of unlabeled data. The aim is to organize the data into groups based on common features or similarities.

Scatterplot

import seaborn as sns
sns.set()


```
# Load the example planets dataset
planets = sns.load dataset("planets")
cmap = sns.cubehelix palette(rot=-.2, as cmap=True)
ax = sns.scatterplot(x="distance", y="orbital_period",
           hue="year", size="mass",
           palette=cmap, sizes=(10, 200),
           data=planets)
```

Scatterplot

kdeplot

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt


```
sns.set(style="dark")
rs = np.random.RandomState(50)

# Set up the matplotlib figure
f, axes = plt.subplots(3, 3, figsize=(9, 9), sharex=True, sharey=True)
# Rotate the starting point around the cubehelix hue circle
for ax, s in zip(axes.flat, np.linspace(0, 3, 10)):
```

kdeplot

f.tight layout()

```
# Create a cubehelix colormap to use with kdeplot
  cmap = sns.cubehelix_palette(start=s, light=1, as_cmap=True)

# Generate and plot a random bivariate dataset
  x, y = rs.randn(2, 50)

sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=ax)
  ax.set(xlim=(-3, 3), ylim=(-3, 3))
```


kdeplot

Dataset BLL Theses

https://bl.iro.bl.uk/work/86c21604-10d3-4367-a131-fb19a259ce07

1	Α	В	С	D	E	F	G	
1	Title		Author	Institution	1			
2	Computat	tion and measurement of turbulent flow through idealized turbin	Loizou, Panos A.	University of Manchester				
3	Prolactin a	and growth hormone secretion in normal, hyperprolactinaemic a	Prescott, R. W. G.	University	University of Newcastle upon Tyne			
4	Influence	of strain fields on flame propagation	Mendes-Lopes, J. M. C.	University	University of Cambridge			
5	Connectiv	rity, flow and transport in network models of fractured media	Robinson, Peter Clive	University of Oxford				
6	The theor	ry and implementation of a high quality pulse width modulated v	Lower, K. N.	University	of Bristol			
7	Separatio	n bubbles at high Reynolds number : measurement and comput	Davenport, W. J.	University	University of Cambridge			
8	A unified	approach to the identification of dynamic behaviour using the th	Brown, T. A.	University				
9	PWM stra	itegies for microprocessor control of variable speed drives	Midoun, A.	University	of Bristol			
10	Theoretica	al investigations of stress concentrations in carbon fibre reinforc	Wu, C. M. L.	University	of Bristol			
11	Speed-cha	anging of induction motors by phase modulation	Ismail, K. S.	University	of Bristol			
12	The immu	ne response of the bovine udder to Streptococcus agalactiae inf	MacKie, D. P.	Queen's l	Jniversity I	Belfast		
13	Metabolio	effects of Bordetella pertussis	Sidey, Fiona M.	University	of Stratho	clyde		
14	Executing	behavioural definitions in Higher Order Logic	Camilleri, Albert John	University	of Cambr	idge		
15	A method	lology for automated design of computer instruction sets	Bennett, J. P.	University	of Cambr	idge		
16	Reasoning	g about the function and timing of integrated circuits with Prolog	Leeser, Miriam Ellen	University	of Cambr	idge		
17	ModifiedB	r modelling of flave with a free curface	lum liu	Imporial (Callaga Lar	dan		
Ready						148% (-	

https://textexture.com

https://pythonhosted.org/tethne/tutorial.mallet.html

https://towardsdatascience.com/getting-started-with-graph-analysis-in-pythc

etworkx-5e2d2f82f18e

Regression

The term regression is used when you try to find the relationship between variables.

In Machine Learning, and in statistical modeling, that relationship is used to predict the outcome of future events.

Linear Regression https://www.w3schools.com/python/python_ml_polynomial_regression.asp

Linear regression uses the relationship between the data-points to draw a straight line through all them. This line can be used to predict future values.

Linear Regression

Polynomial Regression

If your data points clearly will not fit a linear regression (a straight line through all data points), it might be ideal for polynomial regression.

Polynomial regression, like linear regression, uses the relationship between the variables x and y to find the best way to draw a line through the data points.

90 - 80 - 70 - 60 - 5 10 15 20

https://www.w3schools.com/python_ml_polynomial_regression.asp

Links & Tools

Machine Learning

www.python.org

Visualization

https://seaborn.pydata.org/

https://github.com/brianspiering/awesome-dl4nlp

https://datavizcatalogue.com/

www.tableau.com

https://densitydesign.org/

https://www.flickr.com/photos/densitydesign/sets/72157628222445801/with/6431913399/

https://www.flickr.com/photos/densitydesign/sets/72157624141332939/

https://densitydesign.org/research/minerva/

Stack Overflow

https://stackoverflow.com/questions/tagged/python

Tableau https://www.tableau.com/learn/articles/data-visualization

ttps://www.elsevier.com/connect/story/research-matters/research-data/a-5-step-guide-to-data-visualization

Links

www.iskouk.org

https://twitter.com/ISKOUK

https://www.linkedin.com/groups/2079995/